Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level.

نویسندگان

  • Yasutaka Soeda
  • Maurice C J M Konings
  • Oscar Vorst
  • Adele M M L van Houwelingen
  • Geert M Stoopen
  • Chris A Maliepaard
  • Jan Kodde
  • Raoul J Bino
  • Steven P C Groot
  • Apolonia H M van der Geest
چکیده

During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmopriming Improves Spinach Seed Germination under Environmental Stress

Seed priming has been suggested to improve germination performance under temperature or water stress. The objective of this study was to develop an optimal osmopriming protocol for spinach (Spinacia oleracea L. cv. Bloomsdale) seeds and examine its effect on the germination performance at suboptimal and supraoptimal temperatures, and under water stress. Standard germination tests at optimal ger...

متن کامل

Seed Priming with Polyethylene Glycol Induces Physiological Changes in Sorghum (Sorghum bicolor L. Moench) Seedlings under Suboptimal Soil Moisture Environments

Osmopriming with PEG has potential to improve seed germination, seedling emergence, and establishment, especially under stress conditions. This research investigated germination performance, seedling establishment, and effects of osmopriming with PEG on physiology in sorghum seedlings and their association with post-priming stress tolerance under various soil moisture stress conditions. Results...

متن کامل

Effect of Nitrogen and Phosphorus Bio Fertilizers on Some Seed Germination Traits of Two Cultivars of Quinoa under Salinity Stress

Introduction: salinity is known as the most important inhibitor of seed germination of most plants and limits the establishment of plants in arid and semi-arid regions such as Iran. The first effects of salinity on plant growth are associated with reduced seed germination and lack of uniformity in plant emergence. Currently, identification and utilization of tolerant cultivars are one of the mo...

متن کامل

Determination of Aluminum Stress Tolerance Threshold During Seed Germination of Wheat

Environmental stresses are the most important factors that reduce plant growth in stages of development. The presence of aluminum in acidic soils as an environmental stress has an impact on different parts of the plant and reduces root growth, water absorption and nutrients and increases susceptibility to drought.  In order to evaluate the effect of aluminum stress levels on wheat at germinatio...

متن کامل

Plant Growth Promoting Rhizobactria Enhance Salinity Stress Tolerance in Cumin (Cuminum cyminum L.) During Germination Stage

In order to investigate the effect of seed inoculation with Plant Growth Promoting Rhizobactria (PGPR) on germination and some biochemical and physiological indices of Cumin (Cuminum cyminum L.) under salinity stress, an experiment was conducted. Experimental factors were included in seed priming in five levels (seed inoculation with three strains of Pf2, Pf25 and CHA0 of Pseudomonas fluorescen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 137 1  شماره 

صفحات  -

تاریخ انتشار 2005